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A number of conservative PDEs, like various wave equations, allow for a multi-
symplectic formulation which can be viewed as a generalization of the symplectic
structure of Hamiltonian ODEs. We show that Gauss—Legendre collocation in space
and time leads to multi-symplectic integrators, i.e., to numerical methods that pre-
serve a symplectic conservation law similar to the conservation of symplecticity
under a symplectic method for Hamiltonian ODESs. We also discuss the issue of con-
servation of energy and momentum. Since time discretization by a Gauss—-Legendre
method is computational rather expensive, we suggest several semi-explicit multi-
symplectic methods based on Gauss—Legendre collocation in space and explicit or
linearly implicit symplectic discretizations in time g 2000 Academic Press

1. INTRODUCTION
The scalar wave equation
deU = dl — V/(U),  (X,1) el C R?, (1)

V:R — R some smooth function, is an example of a multi-symplectic Hamiltonian PD
[3] of type

wherez € R, M, K e R%Y are two skew-symmetric matrices (which can be singular)
andS: RY — R is a smooth function. In the particular case of the wave equation (1), a mul
symplectic formulation (2) can be derived as follows [3]. We introduce canonical momel
v = U, w = dxU and define the state variable

u
Z= |V
w
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Using this variable, we obtain

0 -1 0 0 0 1
M=|1 0 O and K=(0 0 0f,
0 0 O -1 0 O

as well as the Hamiltonian
1 2 2
S(2) = E(v —w) + V().

Other Hamiltonian PDEs that can be rewritten as a multi-symplectic system (2) include
nonlinear Schvdinger equation (see Section 6), the Boussinesq equation, the shallow wi
equation, and the Korteweg—de Vries equation [3-5].

The multi-symplectic reformulation (2) is interesting for several reasons (see [3-5] 1
theoretical results), one of the most important perhaps being the existence of the m
symplectic conservation law

9 [dzAaM dZF + ox[dzAnKdZg =0 3
which, for the wave equation (1), is equivalent to
d[du A dv] — 9[du A dw] = 0. 4)

In other words, changes in the wedge prodiictA dv in time are exactly compensated
for by changes in the wedge produttt A dw in space. We note that this is a strictly local
conservation concept that, e.g., does not depend on specific boundary conditions. This
contrast to the classical formulation of the wave equation (1) as a Hamiltonian initial val
problem over some appropriate function space. Furthermore, for conservative systems
do not depend on a spatial direction (like Newton’s equations of motion), we obtain t
classical result

d[dU/\dV] dZM:du Ad 0
J— = — Vk =
dt o R

whereu e RM would be the vector of coordinates ame RM the vector of canonical
momenta.

It is widely recognised that the symplectic structure of phase space should be taken
account when it comes to numerical simulations of Hamiltonian systems. In particul
methods that preserve the wedge proaixcih dv exist for canonical (finite-dimensional)
Hamiltonian systems and are called symplectic methods [18]. A discussion of symple
methods for finite dimensional spatial truncations of the wave equation (1) can be fou
for example, in [13, 8]. The basic idea is to find a finite dimensional spatial truncation

au =V, (5)

d :
av = Au —V'(u) (6)
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U= (Us,...,um)T,v=(v,...,om)T whereA e RM*M s a finite-difference approxima-
tion to 3y, andV’(u) = (V'(uy), V'(Uy), ..., V'(um))T, M the number of grid points. This
differential equation (5)—(6) is Hamiltonian in the varialole v) € R?M if A is symmetric
leading to the invariance of the symplectic structdwe\ dv. Typically A is obtained using
the second central difference approximation (leapfrog) but higher order symmetric fir
difference approximations are also occasionally applied [8]. This system (5)—(6) can r
be integrated in time using a symplectic discretization. For exampdsithe second cen-
tral difference approximation and (5)—(6) is discretized by theB€i—Verlet method [18],
then the popular leapfrog discretization of the nonlinear wave equation (1) is obtained.
stead of applying a symplectic discretization in time one can also use an energy conser
discretization. This option has, for example, been explored in [19, 10, 15].

Contrary to this “classical” approach, the investigation of multi-symplectic numeric
methods for Hamiltonian PDEs is a very recent subject. The first paper is due to Mars
et al. [11] who used a formulation of the multi-symplectic structure for wave equatior
based on a Lagrangian formulation of the Cartan form in field theory [12]. They then der
a numerical scheme by discretizing the Lagrangian. This leads to an elegant generaliz:
of Veselov discretizations [20] to PDEs. However, there are limitations in a Lagrangi
setting, such as restrictions on the order of numerical discretizations. A new definitior
multi-symplectic integrators based on a discrete form of the symplectic conservation law
was recently suggested by Bridges and Reich in [6]. It has been shown that popular metl
such asthe centered Preissman scheme [1] and the leapfrog method are multi-symplect
that such schemes have remarkable local energy and momentum conserving propertie

In this paper, we like to explore the question of whether or not symplectic methods

2 =¢At(zn)a the1 = th + AL,
for canonical Hamiltonian ODEs

d
2= JWVW,H@, zeRM, J=-JT, (7)

with their exact conservation property
dZ" A Jd2 = d2 A Jd2

can be generalised to multi-symplectic PDEs (2). The main objective is to formulate hig
order multi-symplectic discretizations. For simplicity of exposition, we will restrict to th
nonlinear wave equation (1) and one of our main results is that we show that a pro
implementation of Gauss—Legendre collocation methods [18] leads to a multi-symple
numerical scheme for (1). See Section 6 for a brief discussion of the nonlinead8cier
equation. We point out that the spatial discretization by Gauss—Legendre collocation m
ods leads to a particular type of the pseudospectral (cell) methods [9]. It is known that tf
methods are well suited for the integration of very smooth solutions over long periods
time under a stringent error requirement [9].

One of the main justifications for applying symplectic methods to (finite-dimensione
Hamiltonian systems (7) stems from their excellent conservation of the Hamiltoni
(energy)H over very long integration intervatg e [0, T][2]. For a multi-symplectic system
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(2), conservation of energy is replaced by the following local conservation law [4],
otE(2 4+ oxF(2) = 0. (8)

The energy density is
14
E2 = S(2 — 5z Kaxz

and the energy flux is

1

F(2)==2'Kdz

2

This can be seen from
T T 1, 1 4
0=0%Z'Mdz=8S2 — &z'Kdz= &Sz — 53‘ [2'Kokz] + éaX [Z'KaZ].

For the wave equation (1), we can eliminate the partial derivativds &and F and can
formulate an energy conservation law (8) with

1
E= E(w2 +v?) + V(@) and F=—vw,

where we have made use of the idendity = 9; w = dixU. There is a corresponding momen-
tum conservation law which is obtained by premultiplying (2)dy' [4]. For the wave
equation, we can again simplify the corresponding expressions and obtain a momen
conservation law

&l (2 +0xG(2 =0 9)
with
l@=F@=-w and G@= %(wz ) V),

It is known that Gauss—Legendre methods exactly preserve quadratic first integrals of
dinary differential equations [7, 18]. One could therefore expect that a Gauss—Leger
discretization of the wave equation (1) leads to a discrete energy/momentum conserve
law if the functionV is zero or at most quadratic in As we will see in Section 3, this
analogy does indeed hold.

2. GAUSS-LEGENDRE DISCRETIZATIONS ARE MULTI-SYMPLECTIC

Let us state the multi-symplectic formulation of the wave equation (1) in the form

Jdu = v, (10)
oxU = w, (11)
v — w = —V/(U). 12)
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The corresponding equations for the differential one fodms- (du, dv, dw)™ are given
by

Ot du = dv,
Oy du = dw,
o dv — 9y dw = =V’ (u) du.

This yields the multi-symplectic conservation law (4) via
dundgdv —dundydw=-V'(U)ydundu=0
together with the observation that
d¢[du A dv] = 8;du A dv + du A 3;dv = dv A dv + du A 3¢dv = du A 9;dv
and, similarly,
dx[du A dw] = du A 9 dw.
Let us now discretize (10)—(12) by a Gauss—Legendre collocation method written in

form of an implicit Runge—Kutta method [18]. We start with the spatial discretization ar
rewrite (10)—(12) as

3XU =w, (13)
w = v + V'(u), (14)
0= du—v. (15)

Next we apply an implicit Runge—Kutta (RK) scheme wsthtage variablegU;, W) and
coefficients{a;j }, {by} to (13)—(14) and obtain the semi-discretization

S
Ui =Uk+AXZaijo, (16)
j=1
S
W= wi + AX Y a3V + V'(U))), (17)
j=1
S
Uk+1 = Uk + AX Z b W, (18)
i=1
S
Wi = wi+AX Y B @V + V(U) (19)

i=1

which is defined for alt. Note thatuk(t) is an approximation tai(xk, t). For simplicity,
we setk = 0 and assume thag = 0.

Let us check if this semi-discretization of the wave equation (2) implies a correspond
semi-discretized version of the conservation law (4). We first derive the equations for
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differentials
S
dUi = dug + Ax > a&; dW;, (20)
j=1
S
dWi = dwo + AX Y & (3 dVj + V"dU)), (21)
j=1
S
duy = dup + Ax ) by dW;, (22)
i=1
S
dwy = dwo + AX > _ b3 dVi + V" dU)). (23)

i=1

Using (22) and (23), we proceed with

S S
duy A dwy = (duo +AXY by dWi> A (dwo +AX Y b (@ dV; +V” dUi)>

i=1 i=1

S S
= duo A dwo + dup A AX > b (3 dV; + V" dUp) + Ax > b dWi A dwg
i=1 i=1
S S
+AX2Y S “biby dWi A (3 dV; + V" dU)).
i=1 j=1

This is further transformed to
S
duy A dwy = dup A dwo + Ax Y by dUj A 8 dV;
i=1

S S
+Ax2Y ) (bibj — bjay — bia) AW A (8 dV; + V" dU))

i=1 j=1
using (20)—(21). The last term is zero for Gauss—Legendre methods since [18]
b,—aji + bia” — bibj =0

for all i, j. Thus, upon applying a Gauss—Legendre RK method, we obtain the sel
discretized conservation law

S

[du; A dwy — dug A dwg] — Z bi[dU; A 0, dVi]AX =0 (24)
i=1

which holds for allt.

The next step is the discretization in time over a time intervalAlJ. Since we are
using implicit RK methods, we can solve (16)—(17) W, (t), j = 1,...,s. We also
use Eg. (15) and implement a Runge—Kutta time-discretization witbtages and
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coefficients{&mn}, {Bm},

r
Um= Uio + At Z amnVi n, (25)
n=1
r
\/i,m = Uio + At Zémnatvi,n» (26)
n=1
r
ul = U+ At>  bnVim. (27)
m=1
r
vil = vio + At Z meatvi,m. (28)
m=1

Here we introduced the notation
Ui.m & u(c AX, dpAt), uil A U(Gg AX, At), ul' & u(Ax, dnAt),

etc., with

r

S
G =Za;j and dm=Zémn.
-1

n=1

The symbold; Vi , denotes the numerical approximationd¥; (dmAt) which we obtain
from (16)—(17) by fixingt = dynAt.

Now we assume again that a Gauss—Legendre method is used and, upon applying si
arguments as before, we obtain the identity

r r
dul A dvt = (du? + ALY by dvi_m> A (dvio + ALY by dvi,m>

m=1 m=1

)
= du} A dv’ + At B dUim A 8 dVim

m=1
or
r ~
[duf A dvf — du A dv?] = bra[dUj m A 3 dVi m] At = O,
m=1
Next we rewrite (24) fot = dyAt as
S
[du A dw — dug' A dwg] — > i[dUj m A 3 dVi m] AX =0
i=1
and obtain the discretized conservation law

S r
> by [duf A dvl — duf A dv?] Ax =Y b [duf A dw] — duf’ A dwi'| At = 0. (29)
i=1

m=1
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This formula can be understood as the approximation of the integral of (4) over the dom
of integration [Q AX] x [0, At], i.e., (29) approximates

AX
/ [du(x, At) A dv(X, At) — du(x, 0) A dv(x, 0)] dx
x=0

At
- / [du(AX, t) A dw(AX,t) —du(0,t) Adw(0,t)]dt =0 (30)
t=0

using Gaussian quadrature for the evaluation of the two integrals.

ProOPOSITIONL. Let the multi-symplectic formulatiofi0)—(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss—Legendre collocatit
methods with &, respectivelystages. Then the resulting discretization is a multi-symplecti
integrator with discrete conservation laf29).

It might appear as if the order in which the discretization in space and time is carri
out would lead to different schemes. But this is not the case. Take, for example, the sp:
discretization (16)—(19), which we write in its time-sampled version

S
Uim = Ug' + AX > ajWjm, (31)
j=1
S
Wim = w' + AX D> & @ Vim+ V'Ujm). (32)
j=1
S
Ul = ug + AX Y Wi, (33)
i=1
S
wi' = wo+ AX D> _ b (3 Vim+ V' (Uim), (34)

i=1
and the time discretization (25)—(28). We could apply the substitution
Wi m = 3tVim+ V' (Uim)
in (32) and (34) as well as
3 Vim = W m—V'(Uim)

in (26) and (28) to obtain the same scheme which, however, appears now to be obtaine
a semi-discretization in time followed by a discretization in space. In fact, our schemes
be written in the general form as presented in Fig. 1.

We like to point out thas = r = 1, i.e., an implicit midpoint discretization in space and
time, leads to the centered Preissman scRgines]

M~ Rp) + K (3727 = V.s(E) @)

! Preissman originally suggested the method in 1961 for the solution of one-dimensional open-channel hydra
problems. The scheme is a popular choice for the computation of unsteady flow problems. It is less well kn
that the scheme can also be applied to wave equations (see [1] for a historical account).
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s
Uim = u6”+A$Zaij3:ch,m,
j=1

s
Wim = wgl—i-A:L'Zaijasz,m,

j=1
s

ul' = uf+ Az Y bi0eUsm,
i=1
8

wl® = wo+ Az Z b0 Wi m,
=1

r
Uim = u? + At Z &mnatUi,ny

n=1

r
‘/im = v?"'AtZ&mnat‘/i,na

n=1

ul = ul+AtY bndelim,

m=1
vl = W04+ At Z b0t Vim,
m=1
atUi,m = V;,m;
amUi,m = Wi,m:
at‘/i,m_amWi,m = _VI(Ui:m)'

FIG. 1. Multi-symplectic Gauss—Legendre collocation methods for nonlinear wave equation.
when applied to a general multi-symplectic PDE (2). Here the standard abbreviations

B = (z+A+7+7), etc,

N

B+z). 2=

NI

B+2). #°=

NI =

are used. The corresponding discrete multi-symplectic conservation law is [6]
[dz}, AMdz}, — dZ) , AMdZ) 5] A + [dzy® A K dzy/? — dzg/® A K dzg?] At = 0.

See [6] for a detailed discussion of the Preissman scheme and its application to m
symplectic PDEs (2).

When looking at problems with periodic boundary conditions, formula (29) he
another interesting consequence. Let us take the sum of Eq. (29) over all spatial
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pointsk =1,..., M

k=1 i=1

M S
r ~
=) bm[du; A dwil, — du A dwy] At) =0.
m=1

Here we have used the abbreviations
Ul ~ UG AX + KAX, At), Ul & U(KAX, dnAl),

etc. Periodicity in space implies
M r
> bm[dugy A dwgl, — du A dwy| At

k=1 m=1

r
=Y bm[duf} 4 Adwh,; — dul Adwi'|At =0

m=1
which in turn yields
M S M 5
DO bidufy Adul = o dudy A dvfy
k=1 i=1 k=1 i=1

This is precisely conservation of symplecticity in time with respect to the state variable:

U= {Uiklk=1.mi=1..s and V= {viklk=1.Mmi=1..s
and the wedge produdu A BdvwhereB is a diagonal matrix with entries corresponding
to the weightgly; }. In other words, multi-symplectic Gauss—Legendre methods imply th

conservation of symplecticity in time, i.e.,
du™ A BdV'*! = du" A BdV,

when applied to problems with periodic boundary conditions. Thus these methods are
symplectic discretizations in the “classical” sense (although with a non-canonical—
non-degenerate—symplectic structure).

PROPOSITION2. Let the multi-symplectic formulatiofi0)—(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss—Legendre collocati
methods with &, respectivelystages. Assume that we solve an initial value problem in tim
with periodic boundary conditions in space. Then the resulting discretization yields a fin
dimensional Hamiltonian truncation of the wave equation in space with the underlyi
symplectic structurelu A Bdv and a symplectic discretization of this finite-dimensional
system in time.
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3. CONSERVATION OF ENERGY AND MOMENTUM

As already mentioned in the Introduction, the wave equation (1) satisfies the ene
conservation law

at E + 8)( F = 0,
where
1 2 2
E= E(w +v%) + V(u)
is the energy density and

F=—-ww

is the energy flux. The wave equation also satisfies the momentum conservation law
We will come back to the issue of momentum conservation towards the end of this sect
We now check for the conservation of the following discrete energy conservation law

S r
> bi[E'— E’]Ax+ > bn[F"— F§"|At =0 (36)
i=1 m=1
with the obvious abbreviations
1
Ef=S((w))+ (1)) + V(). A =—vfw],

etc. This is an approximation to the contour integral intkg) plane

nAt

kAX
/ [E(z(x, nAt)) — E(z(x, 0))] dx+/ [F(z(kax,t)) — F(z(0,t))]dt =0 (37)
X 0

=0 t=l
with k=n=1 in the same sense as (29) is for (30). It immediately also implies a cor1
sponding result for anig, n > 1.

Since Gauss—Legendre collocation methods preserve quadratic integrals of ODESs ex
[7, 18], we could expect that multi-symplectic Gauss—Legendre methods will give rise
a discrete conservation law (36) wh¥iu) =cu?/2, ¢ € R some constant. To be able to
evaluate the corresponding discrete conservation law (36), we have to first introduce
auxiliary systems, namely

S
Vim = U(r)n + szaij 8ij,mv (38)
j=1
S
o' = vf' + AX D bidMim (39)
i=1
and
;
V\/i,m = in + At Zémnatvvi,n, (40)
n=1
r
wl = wl+ At Do Wi m (41)

m=1
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to obtain the missing approximationswindw along the boundary of [QAX] x [0, At].
The undetermined values o'} and{wio} are implicitly given by

r

gl =ug + At Ennvf (42)
n=1
and
S
u? = ud+ Ax > ajud. (43)

=1

Using Egs. (38)—(41), (25), and (31), we derive the two identities

;
Uim= Uio + At Zémnvi,n

n=1

r S
u’+ ALY émn<v8 +AXY ay aXv,,n)

n=1 =1

r S r
W + At Zamnvg + AtAxZ Za” amndx Vi n
n=1 j=1n=1

S r
= Ul +ug' — Ug + AtAX D Y & &mndx Vi
j=1n=1

and, similarly,

S r

Uim = ul' + u’ — ud + AtAx Z Zau Bmndt W n.

j=1n=1
This implies
S r S r
aij é‘mnaxvj,n = Z Z aij émnatV\/j.n
j=1n=1 j=1n=1
and we can conclude that
xVim = Wi m foralli, m. (44)

This reflects the fact that the exact solutions also sadigfy= d;w = dx:u. (In [6], this “hid-
den” conservation law is made explicit by going to a different multi-symplectic formulatio
of the wave equation (1).)

Note that we also obtain the additional equations

r S
up=ud+AtY bl and  uf=ud+Ax> biw]

m=1 i=1

as well as

r S
ui=ul+AtY bl  and  uj=ug+Ax> buwl,

m=1 i=1
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which defineu$~u(0, 0), uY~u(Ax, 0), uj~u(0, At), andul~u(Ax, At) and thus
close the auxiliary system (38)—(43). These equations are over-determined but self-consi
because of

r S r S
0= AtZBmvTJrAbein—AtZBmvg“—Abeiwil
= Athmvo +AtAxZmeb8xV|m+AXwa

m=1i=1

_Athmvo —AXwa —AXAtZbemat i,m

i=1 m=1

and (44). In fact, we have just shown that the “hidden” conservationdaww, = 0 gives
rise to the discrete conservation law

r S
> bm[vf — g At =) b [w! — wl]Ax=0.
m=1 i=1

Let us now come back to the discrete energy conservation law (36). Equations (38)—
together with (31)—(34) and (25)—(28) yield

S S
wil = <w5“ +AXD b3 Vim+ cui,m)> <v3“ +AX> b axvi,m>

i=1 i=1

S

= quUSW + AX Z bi (Vi,matvi,m + CVi,mUi,m + \Ni,maxvi,m) (45)
i=1
and, similarly,
r
1_ (0 £ , Ry , ,

Ef = EP+ AtY  bn(VimdVim + CUimVim + Wi md W m), (46)

m=1

where we used the fact that

o

bjaji +biaj —bibj =0 and E)jé.l + —BiBj =0

in the same manner as done in Section 2 to prove multi-symplecticity. Combining b
formulas, we obtain

S

S r r
> bi[Ef— EPJAX+ > b [F = R A= ) 1D Wm0 Wi m — 0xVim).
i=1

m=1 i=1 m=1

The right hand side of this equation is zero due to (44).

PrOPOSITION3. Let the multi-symplectic formulatiofi0)—(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss—Legendre collocati
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methods with &, respectivelystages. Let us also assume that the potential Y1jns of
the form

c
V(u) = Zu?,
(W >
¢ € R some constant. Then the resulting discretization conserves the discrete energy
servation law(36).

Li and Vu-Quoc have suggested a method that exactly conserves a discrete local en
conservation law for any type of smooth potent&lu) [21, 15]. This local energy con-
servation law is, however, different from (36). Their approach is based on a second cer
difference approximation in space and an energy conserving variant of the implicit midpc
method in time. We wish to point out that, following their approach, one can also obtair
variant of the centered Preissman scheme (35) that exactly conserves the discrete el
conservation law (36) wits = r = 1 for any smooth potential (u). The idea is to apply
an implicit midpoint discretization in space and a proper energy conserving variant of 1
midpoint discretization in time. See the Appendix for more details. Note that this ener
conserving scheme cannot be expected to be multi-symplectic, in general, and that
linear problems, the scheme reduces to the box scheme.

We now investigate the preservation of the momentum conservation law (9). We fi
define a discrete conservation law

S r
> b1 =17 Ax+) " bn[G] - GFAt =0 (47)
i=1 m=1

with the obvious abbreviations

1
= —ululs 67 = S ()" (uf)) - V().

etc. This is an approximation to the contour integral inthg) plane,
AX At
/ [1@z(x, At)) — 1 (z(x, 0))] dX + [G(z(Ax, 1)) — G(z(0,1))]dt = 0.
x=0 t=0

AssumingV (u) = cu?/2, we first derive

r r
whl = <in + At Z”bmatvvi,m> <vi° + At ZBmatvi,m>

m=1 m=1

r
= wl? + ALY DV mdxVim + Wit Vi.m)

m=1
r
= wv + ALY Bin(VimdVim + Wemd Wi m — S W mUi m).
m=1

where, in the second line, we made use of (44). We also obtain

S
T =Gf + AX D b (Wi mdx Wi m + VimdyVi.m — CUi mWh m).
i=1

Combining both results, we indeed obtain the discrete conservation law (47).



MULTI-SYMPLECTIC METHODS FOR WAVE EQUATIONS 487

PrROPOSITION4. Let the multi-symplectic formulatiofi0)—(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss—Legendre collocati
methods with &, respectively stages. Let us also assume that the potential Y1jns of
the form

C
V() = —u?
(u) Su%

¢ € R some constant. Then the resulting discretization conserves the discrete momer
conservation law47).

Propositions 3 and 4 show that multi-symplectic integrators for linear wave equations h
excellent energy-momentum conservation. This suggests that multi-symplectic integra
for nonlinear wave equations will preserve the discrete energy-momentum conserva
laws in good approximation.

The following “global” result for a wave equation (1) with periodic boundary condition
u(0, t) = u(L, t) can be stated. It follows from (37) that

L L
E) ::/ E(z(x,t))dx = £(0) ::/ E(z(x, 0)) dx
x=0 x=0

if z(0,t) = z(L,t) (periodic boundary conditions). This implies conservation of tota
energy€ (t) for the wave equation when considered as an infinite-dimensional Hamiltoni
PDE. Any finite-dimensional Hamiltonian approximation of the wave equation and su
sequent symplectic integration in time will conserve this energy very well provided
small enough [2]. This also applies to the multi-symplectic Gauss—Legendre method:
Section 2 which follow from Proposition 2 and backward error analysis results in [2, 1
Furthermore, there is also conservation of global momentum

L

L
VA ::/ I (z(x,t))dx = Z(0) ::/ I (z(x, 0)) dx

=0 x=0

if z(0,t) = z(L, t) (periodic boundary conditions). Sindeis a quadratic expression in
andw, Gauss—Legendre collocation methods will preserve the discrete global momen
conservation law exactly.

However, this global view provides a much weaker concept of energy and moment
conservation. It is a necessary but not sufficient condition for the preservation of the co
sponding local conservation laws.

4. SEMI-EXPLICIT AND LINEARLY IMPLICIT
MULTI-SYMPLECTIC DISCRETIZATIONS

There are certainly other options available for the time discretization then using a hi
order implicit Gauss—Legendre collocation method (25)—(28) when integrating an initi
boundary value (Cauchy) problem. In fact, one can either apply the implicit midpoint meth
in time and use appropriate concatenations of the corresponding scheme to obtain a h
order in time method or one can apply a higher order explicit symplectic partitioned Runc
Kutta method in time [18]. Let us, for example, take an explicit symplectic concatenati



488 SEBASTIAN REICH

method of the form

0

Ul,l = u| b
Vip =1,
Ui,m+1 = Ui,m + OlmAtVi,m—&-l,
form=1...,r,
Vi,m+l = Vi,m + ﬂmAtatVi,m,
u|l = Ui,r+l,
Uil =Virq

with weights(om, Bm). This yields

)
[duf A duf — du? A dv?] = Bu[dUim A 3:dVi m] At = 0

m=1

which in turn implies the discrete conservation law

S r
> by [duf A dvl — dul A dvl] Ax =) B [dul A dw]" — duf! A dwf'| At =0

i=1 m=1

which is again a discretization of (30).

Another option is to apply the multi-symplectic Gauss—Legendre collocation metho
from Fig. 1 to a linearized wave equation and to use the following three step discretizat
for the nonlinear problem:

(1) Updatev? via

(2) Apply amulti-symplectic Gauss—Legendre method to the linearized wave equat
usingv?. Denote the result bgu, w, ut, 5HT.
(3) Updatev? via

HereV (u) = cu?/2 + \7(u) was used. This linearly implicit scheme conserves the multi
symplectic conservation law (29). The overall scheme will only be second order in time,
general. But higher order in time schemes can be obtained by a proper composition of
(symmetric) second order scheme [14].

5. NUMERICAL EXPERIMENTS

To gain insight into the performance of the suggested multi-symplectic methods,
particular into their local conservation of energy and momentum, we perform the followil
numerical experiments. We discretize the sine-Gordon equation

OttU = OyxU — Sin(u)
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using the multi-symplectic Gauss—Legendre method withl (midpoint in time) and
s=2 (fourth order Gauss—Legendre method in space). We implement periodic bounc
conditionsu(—L/2,t) =u(L/2, t) for two different sets of initial conditions. For the first
experiment, which we caExperiment Awe uselL = 100,

ox-L/6 e x-L/6
_ -1 -1
u(x,0) =4tan (\/1_—132> + 4tan <\/1_—’32>’

and

9 l ) <exL/6ﬂt> L (exL/Gﬂt)]
v(X,0) = — [4tan " | ——= | +4tan "~ | —— .
ot V1-p2 V1-p2 t=0
On an infinite domain, these initial conditions correspond to a soliton and anti-solit
solution moving with speed 8. We set8 = 0.5. In Fig. 2, snapshots of the time evolution
of the wave formu(x, t) are shown over a time intervak [0, 200]. This approximation is
obtained using a time-step aft = 0.1 andM = 100 spatial mesh points.

For the second experiment, call&kperiment Bwe consider the so-called breather
solution

u(x,t) = 4tan?t

(«/ 1—w? coswt )

coshixv/1 — w?)
time t=0 time t=17
5 \ { 5 U
0 0
-5 -5
-10 -10
-50 0 50 -50 0 50
time t=67 time t=117
5
5
0 0
g [ oz
‘3, _5 3
-5
-10
-10
-50 0 50 -50 0 5
time t=167 time t=200
5 5
0 0

-5 /\ -5

-50 0 50 -50 0 50
X X

FIG. 2. Time evolution of the soliton/anti-soliton solution over the time intetval[0, 200].
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x 107 error in total energy
4 T T T T T T T T T
2 = -
0
21 4
_4 1 ] 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
time
x107° error in total momentum
1 T T T T T T T T T
0.5 1
0
-05 s
_1 1 | 1 1 1 1 I 1 1
0 20 40 60 80 100 120 140 160 180 200
time

FIG. 3. Numerical errors in the global energy and momentum over the time interyaD@) (with two
collisions of kinks).

with w = 0.9. On an infinite domain, this is a bump shaped solution which oscillates up a
down with period Z'/w. To exclude boundary effects, we used period boundary conditior
with L =100.

We monitor the drift in the numerical approximations to the total enér@y and the
total momentunt (t) as well as the error in the numerical discretizations of the local ener
conservation law (36) and the local momentum conservation law (47).

The numerical errors in the conserved quantities for the Experiment A can be fou
in Fig. 3. These results are obtained usiMg= 100 spatial grid points and a time-step of
At =0.1. Total momentunt (t) is conserved exactly since it is a quadratic invariant. The
two pronounced spikes in the error of the total energy correspond to rapid “flip” transitio
of the solutionu(x, t) whenever the two kinks meet at= &L orx = 0.

We also plot the error in the local conservation laws (36) and (47) as a function of t
spatial grid location and the time-step. As can be seen from Fig. 4, the errors are ma
concentrated around the two moving fronts.

The corresponding numerical results for Experiment B can be found in Fig. 5. The
results are obtained using = 60 spatial grid points and 60 time-steps per period of the
motion which isT =27 /w ~ 6.9813. Again, total momentuff(t) is conserved exactly (up
to the error in the Newton iteration) since it is a quadratic invariant. The error behavic
of the total energy is typical for a symplectic time discretization of an Hamiltonian ODE
The errors in the local conservation laws are focused abett) where the center of the
breather solution is located. Instead of summing the errors in the local conservation I
over the full spatial extension and plotting the result as a function of time, one can also s
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motion of two kinks mation of two kinks

error in energy CL
error in momentum CL

time 0 -50 space

collision of two kinks

=1
| 2y o
5] E
= =
21 =
g £
g 5
£ 0 E
‘g k=
T _q g
170 o

50

160

0
time 150 -50 space time 150 -50

space

FIG. 4. Numerical errors in the local energy/momentum conservation laws over the two intervals [0, 30] (
collision of kinks) and [150, 170] (collision of kinks at=0).
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FIG. 5. Numerical errors in the local/global energy/momentum conservation laws for the breather solut
over the time interval [0, 140].
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%x107° (a) residual in the energy conservation law
3.5 T T T T T T
3 [ -
2.5H b
2 H |
1.5H H
1 H i
0.5 [
LA
0 20 40 60 80 100 120 140
time T
x10? (b) residual in the momentum conservation law
0 T T T T T T
-} =
2 4
—-ar -
-4 i
-5 4]
_6 1 1 1 1 1 1
0 20 40 60 80 100 120 140
time ©

FIG.6. Numerical errorsinthe local energy (a) and momentum (b) conservation laws summed over the sp:
interval [0, L /4] and time intervals [0r] as a function ofr € [0, 140] (breather solution).

the errors over a fixed spatial interval ff] and time intervals [0z], T > 0. See Fig. 6 for
the case €[0, 140] anda = L /4. Note that the errors in the local energy conservation lav
do not grow witht but that the corresponding errors in the momentum conservation la
increase with increasing valuesof

We like to point out that our numerical experiments show that the error in the ener
conservation law (36) divided by the area elem#ariAt depends only on the chosen time-
stepAt and is second order int while the corresponding error in the local momentum
conservation law (47) depends only on the spatial meshsizand is approximately of
fourth order inAx. See Table I.

TABLE |
Maximum Error in the Local Energy/Momentum Conservation Laws
over All Spatial Grid Points and Two Time Periods as a Function of the
Spatial Mesh SizeAx and the Time-StepAt

Energy/momentum At = 0.058 At =0.116 At =0.1745
Ax =10 3.2e-44.16e-5 1.3e-34.09e-5 2.8e-B4.06e-5
AxX =125 3.03e-41.06e-4 1.2e-AL.06e-4 2.7e-AL.04e-4
AX = 1.67 3.06e-42.72e-4 1l.1e-®.97e-4 2.4e-R.87e-4

Note.The residualsin (36) and (47) are dividedsyA x to make the corresponding
integrals independent of the size of the cell over which they are taken.



MULTI-SYMPLECTIC METHODS FOR WAVE EQUATIONS 493

For comparison, we implemented a method-of-line approach to the wave equation
using the Stfmer—Verlet method [18] in time and the symmetric fourth order finite dif
ferences discretization of the Laplacian operator [8]. The resulting discretization can

written as

ot = af + Atp] ™2,

- At /—q,+169",; —30q" + 169" ; — g /
] _ p? 1/2+AX2< j+2 i+1 121 -1 " 2) _ AtV (q?)

As shown in [13, 8], the resulting method is symplectic when considered as a time ¢
cretization of a finite dimensional Hamiltonian approximation of (1). However, because
the non-symplectic finite difference approximation of the Laplacian, the overall methoc
not multi-symplectic. We repeated Experiment B with this finite differences scheme a
evaluated thé,, global error of the numerical computed breather solution &ftariods,
k=1,...,700. The results for a step-sizetsf =T/120,T =2 /w, and different values
of the spatial mesh-sizax=L/M, L =100, can be found in Fig. 7. We note that the
symplectic finite differences method has initially a smaller global error compared to t
multi-symplectic Gauss—Legendre collocation method. However, due to an apparently n

(a) finite differences (o), Gauss-Legendre (x)

global error

—4 ] 1 1 1 1 1
o 100 200 300 400 500 600 700
number of periods

(b) finite differences (o), Gauss-Legendre (x)

global error

1 L 1 L L
0 100 200 300 400 500 600 700
number of periods

FIG. 7. Global solution error for the breather solution aftee 1, ..., 700 periods forAt =T/120 and
differentvalues oA x = L /M using a symplectic finite differences method and a multi-symplectic Gauss—Legenc
collocation method of the same order: (a) Gauss—Legendre methedth M = 100 and finite differences method
(O) with M =150 mesh points; (b) Gauss—Legendre methodwith M =80 and finite differences metho®J
with M =100 mesh points.
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favourable error propagation, the multi-symplectic collocation method yields, in both cas
a smaller global error aftéde = 700 periods. Note that both methods use a second ord
discretization in time and a fourth order discretization in space.

6. ANOTHER EXAMPLE: NONLINEAR SCHR ODINGER EQUATION

To demonstrate the generality of our approach, we briefly consider multi-symplec
integration of the one-dimensional nonlinear Salinger equation [5]

iy = 0¥ + V(¥ Dy, (X, t) el CR?,

V:R — R some smooth function. Using = a+ib, we rewrite this as a pair of real-valued
equations

da = +xb+ V'(@% + b?b,
b = —da— V'@ + b%a.

Next we introduce a pair of conjugate momenta ax, w =by, and obtain the multi-
symplectic PDE

—3b— a4 = V'@ +ba,
da — dyw = V'(@% + b?)b,
oxa = v,

oxb=w
with phase space varialte= (a, b, v, w)T and Hamiltonian
S(2) = %(v2 + w? + V(@ + b?)).
The corresponding multi-symplectic conservation law (3) is
d[da A db] + d«[da A dv + db A dw] = 0. (48)

We like to point out that one of the conservation laws of the 8dimger equation is

a’+b?
2

ot + 0y (vb — wa) = 0. (49)

Again we first discretize the reformulated equation

aw = —db — V'@ + bda,
w = +da — V'@ + b?)b,
oxa = v,

axb:w
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in space by a Gauss—Legendre collocation method. Using similar notations as in Sectic
it is relatively straightforward to derive the corresponding semi-discretized conservat
law

S
[dag A dvg — dag A dug] + [dby A dwy — dbg A dwg] + Zbi d[dA AdBj]AXx = 0.
i=1

Discretization in time is now achieved by using

r
Ai,m = aiO + At ZamnatAi,n,

n=1

r
Bi,m = bio + At Zémnat Bi,n»

n=1

r
&' =a’+ AtY  bndAm,

m=1
r ~
bt = b’ + At b Bim
m=1

with the corresponding conservation property

r
dal A do! — da? A db?] — > " br[d dA m A B m + dAim A 3 dB; ] At = 0.

m=1

Combining these results, we derive the discretized multi-symplectic conservation law

S
> bi[da! A dbf — da’ A db?] Ax

i=1

m
+ ) b[dal A dv — daf’ A dvf’ + dbf" A dw]" — dbf’ A dw{'] At =0
r=1

which is a discretization of (48) integrated over the domajmyf] x [0, At].

Using the complex-valued state varialale= (, )T € C2, 8xy = ¢, we can rewrite
the multi-symplectic formulation of the nonlinear Sctiriger equation in a more compact
notation as

iy — axgp = V' (Y19,
WY = ¢

and the general form of a multi-symplectic Gauss—Legendre discretization can be foun
Fig. 8. In particular, the choice=s=1 leads again to a Preissman scheme

i 1 !/
(o= D) = (0% = 957 + V' ([vifz] ) wits.

1 a0 12 172
B( 7 —%/)=¢1;2
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s
‘I’i,m = ¢6n+AwZaijawlI’j,ma

=1

-]
®im = ¢g + szaijamq’j,m,

i=1
s

Y= YT+ AT b0 Vim,
=1

$
QST = ¢0 + Az Z bzaa: Qi,ma

i=1
r
‘I’i,m = "7[)? + At Z a'mnat\l’i,n,
n=1

Pl = Y+ ALY b T,

m=1

iat‘I"i,m - aa:i’i,m VI(I‘I’i,mlzl)‘I’i,m,
a:::‘I’i,m = Qi,m'

FIG. 8. Multi-symplectic Gauss—Legendre collocation methods for the nonlinean&iciger equation.

with

wm—§w1+%) =3

Lt aud), g = (@+@)

m,i = 1,2, and

(61 + o5 + 09 + ¢9).

N

(wi+vd+vd+yd), o¢rz=

iR

12
Vi =

We like to point out that any multi-symplectic Gauss—Legendre discretization will exact
preserve a discrete version of the conservation law (49). This follows from the quadre
form of the conservation law and the fact that quadratic conservation laws are exa
preserved by Gauss—Legendre methods.

Whenitcomesto the integration of an initial-boundary value (Cauchy) problem, one cot
discretize in space using a Gauss—Legendre method and replace the temporal discretiz
by any convenient symplectic discretization of the spatially truncated system. Similar
what has been shown in Section 4 for the nonlinear wave equation, we would again ob
multi-symplectic methods.
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7. CONCLUDING REMARKS

Theoretical results indicate [3-5] that the multi-symplectic structure of certain PDES
crucial for a deeper understanding of wave phenomena. One of the nice features is
it is a strictly local concept and that it can be formulated as a conservation law involvi
differential two forms. It is thus also a very natural generalization of the conservation
symplecticity for canonical Hamiltonian systems. The results of this paper show that i
possible to find higher order multi-symplectic methods in a rather general setting ag
similar to the finite dimensional situation.

The suggested Gauss—Legendre discretizations for the one-dimensional nonlinear \
equation (1) naturally generalize to any multi-symplectic PDE (2). Furthermore, they c
also be applied to higher-dimensional nonlinear wave equations like, for example,

BtU — dxxU — dyyu = —V'(u)
and, more generally, to multi-symplectic PDEs like, for example,

This also implies that the schemes can be applied to the corresponding stationary prob
characterised bz = 0.

Further results on multi-symplectic methods in the context of finite volume methods ¢
be found in [17].

APPENDIX: ENERGY CONSERVING PREISSMAN SCHEME
The Preissman scheme (35) applied to the wave equation (1) results in the system

1 0 1 0
Upp —Upp  Viptuip

= ) 50
At 2 (50)
Vi — Vi _ wy? — wy'? _ V/(ul/Z) (51)
At AX Yen
1/2 1/2 1/2 1/2
AX 2
Following Li and Vu-Quoc [21, 15], we modify Eq. (51) to

At AX Uz, — U9))

We like to show that this modified scheme exactly conserves the discrete energy conserv:
law

1/2 1/2
E%/Z - E(l)/z + Fl/ - Fo/
At AX

=0

with the abbreviations

1
Efo =5 ((wh) + (002)°) +V(ulo)  and  FY? = —uiPugf,
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n,m = 0, 1. This discrete energy conservation law corresponds to the formula (36) w
r=s=1b;=b,=1,andi = m=1/2.

For the subsequent derivation it is crucial to observe that the solutions of (50)—(52)
well as of (50) and (52)—(53) satisfy

wip—wlp L /up-uf w@-uf\ 1 /ui-u) uf—ud) v —wg?
At At\  AX AX AX At AX AX
We now premultiply (52) bywi,, — wf,)/At and use the above identity to obtain

1 \2 0 \2 1 0o ,1/2 1/2 1/2 12 1/2 1/2
(wl/z) - (wl/Z) _ Wyp — Wip Ul/ —Uo/ _ 01/ - Uo/ wl/ + o/ (54)

2At a At AX AX 2

Next we premultiply (50) byvi, — vf,,)/ At which yields

2 0 \2 0 0
(U%/z) - (vl/z) _ ”%/2 — V1 U%/z — Uy
2At At At

Finally, Eq. (53) is premultiplied byui,, — uf ,)/At which, using the previous equation,
results in

2 2 1/2 1/2
(”%/2) - (Ug/z) _ v%/z + U?/z wl/ — wo/ _ V(Ui/z) - V(Ug/z) (55)
2At 2 AX At '
Upon combining (54) and (55), we get
Ebe— EDo _ ol 408wl —ug® ol = of? wi® + g
At 2 AX AX 2
B vi/Zwi/Z _ v(l)/2w(l)/2
- AX
1/2 1/2
__ Fi'"—Fg
AX

as desired. The system (50) and (52)—(53) does not, in general, preserve the mome|
conservation law

172 172
|1l/2_ |f/2 n Gl/ —GO/
At At

=0

with

=

D= —vipwl, and  GY?=Z((vi?)"+ (wi®)’) -V (u?).

To obtain a momentum conserving algorithm, (53) has to be replaced by

vie— vl _ wi®—wg® V(W) — V(w5

At AX uy’® — ug/Z
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