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A number of conservative PDEs, like various wave equations, allow for a multi-
symplectic formulation which can be viewed as a generalization of the symplectic
structure of Hamiltonian ODEs. We show that Gauss–Legendre collocation in space
and time leads to multi-symplectic integrators, i.e., to numerical methods that pre-
serve a symplectic conservation law similar to the conservation of symplecticity
under a symplectic method for Hamiltonian ODEs. We also discuss the issue of con-
servation of energy and momentum. Since time discretization by a Gauss–Legendre
method is computational rather expensive, we suggest several semi-explicit multi-
symplectic methods based on Gauss–Legendre collocation in space and explicit or
linearly implicit symplectic discretizations in time.c© 2000 Academic Press

1. INTRODUCTION

The scalar wave equation

∂t t u = ∂xxu− V ′(u), (x, t) ∈ U ⊂ R2, (1)

V :R→ R some smooth function, is an example of a multi-symplectic Hamiltonian PDE
[3] of type

M∂tz+ K∂xz=∇zS(z), (2)

wherez ∈ Rd, M ,K ∈ Rd×d are two skew-symmetric matrices (which can be singular),
andS:Rd→R is a smooth function. In the particular case of the wave equation (1), a multi-
symplectic formulation (2) can be derived as follows [3]. We introduce canonical momenta
v = ∂t u, w = ∂xu and define the state variable

z=
[

u
v

w

]
∈R3.
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Using this variable, we obtain

M =
0 −1 0

1 0 0
0 0 0

 and K =
 0 0 1

0 0 0
−1 0 0

 ,
as well as the Hamiltonian

S(z) = 1

2
(v2− w2)+ V(u).

Other Hamiltonian PDEs that can be rewritten as a multi-symplectic system (2) include the
nonlinear Schr¨odinger equation (see Section 6), the Boussinesq equation, the shallow water
equation, and the Korteweg–de Vries equation [3–5].

The multi-symplectic reformulation (2) is interesting for several reasons (see [3–5] for
theoretical results), one of the most important perhaps being the existence of the multi-
symplectic conservation law

∂t [dz∧M dz] + ∂x[dz∧ K dz] = 0 (3)

which, for the wave equation (1), is equivalent to

∂t [du ∧ dv] − ∂x[du ∧ dw] = 0. (4)

In other words, changes in the wedge productdu ∧ dv in time are exactly compensated
for by changes in the wedge productdu ∧ dw in space. We note that this is a strictly local
conservation concept that, e.g., does not depend on specific boundary conditions. This is in
contrast to the classical formulation of the wave equation (1) as a Hamiltonian initial value
problem over some appropriate function space. Furthermore, for conservative systems that
do not depend on a spatial direction (like Newton’s equations of motion), we obtain the
classical result

d

dt
[du∧ dv] = d

dt

M∑
k=1

duk ∧ dvk = 0,

whereu∈RM would be the vector of coordinates andv∈RM the vector of canonical
momenta.

It is widely recognised that the symplectic structure of phase space should be taken into
account when it comes to numerical simulations of Hamiltonian systems. In particular,
methods that preserve the wedge productdu∧ dv exist for canonical (finite-dimensional)
Hamiltonian systems and are called symplectic methods [18]. A discussion of symplectic
methods for finite dimensional spatial truncations of the wave equation (1) can be found,
for example, in [13, 8]. The basic idea is to find a finite dimensional spatial truncation

d

dt
u = v, (5)

d

dt
v = Au− V′(u) (6)
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u = (u1, . . . ,uM)
T , v= (v1, . . . , vM)

T whereA ∈ RM×M is a finite-difference approxima-
tion to∂xx andV′(u) = (V ′(u1),V ′(u2), . . . ,V ′(uM))

T , M the number of grid points. This
differential equation (5)–(6) is Hamiltonian in the variable(u, v) ∈ R2M if A is symmetric
leading to the invariance of the symplectic structuredu∧ dv. Typically A is obtained using
the second central difference approximation (leapfrog) but higher order symmetric finite
difference approximations are also occasionally applied [8]. This system (5)–(6) can now
be integrated in time using a symplectic discretization. For example, ifA is the second cen-
tral difference approximation and (5)–(6) is discretized by the St¨ormer–Verlet method [18],
then the popular leapfrog discretization of the nonlinear wave equation (1) is obtained. In-
stead of applying a symplectic discretization in time one can also use an energy conserving
discretization. This option has, for example, been explored in [19, 10, 15].

Contrary to this “classical” approach, the investigation of multi-symplectic numerical
methods for Hamiltonian PDEs is a very recent subject. The first paper is due to Marsden
et al. [11] who used a formulation of the multi-symplectic structure for wave equations
based on a Lagrangian formulation of the Cartan form in field theory [12]. They then derive
a numerical scheme by discretizing the Lagrangian. This leads to an elegant generalization
of Veselov discretizations [20] to PDEs. However, there are limitations in a Lagrangian
setting, such as restrictions on the order of numerical discretizations. A new definition of
multi-symplectic integrators based on a discrete form of the symplectic conservation law (3)
was recently suggested by Bridges and Reich in [6]. It has been shown that popular methods
such as the centered Preissman scheme [1] and the leapfrog method are multi-symplectic and
that such schemes have remarkable local energy and momentum conserving properties [6].

In this paper, we like to explore the question of whether or not symplectic methods

zn+1 = ψ1t (z
n), tn+1 = tn +1t,

for canonical Hamiltonian ODEs

d

dt
z= J−1∇zH(z), z∈ R2M , J = −JT , (7)

with their exact conservation property

dzn+1 ∧ J dzn+1 = dzn ∧ J dzn

can be generalised to multi-symplectic PDEs (2). The main objective is to formulate higher
order multi-symplectic discretizations. For simplicity of exposition, we will restrict to the
nonlinear wave equation (1) and one of our main results is that we show that a proper
implementation of Gauss–Legendre collocation methods [18] leads to a multi-symplectic
numerical scheme for (1). See Section 6 for a brief discussion of the nonlinear Schr¨odinger
equation. We point out that the spatial discretization by Gauss–Legendre collocation meth-
ods leads to a particular type of the pseudospectral (cell) methods [9]. It is known that these
methods are well suited for the integration of very smooth solutions over long periods of
time under a stringent error requirement [9].

One of the main justifications for applying symplectic methods to (finite-dimensional)
Hamiltonian systems (7) stems from their excellent conservation of the Hamiltonian
(energy)H over very long integration intervalstn ∈ [0, T ] [2]. For a multi-symplectic system
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(2), conservation of energy is replaced by the following local conservation law [4],

∂t E(z)+ ∂x F(z) = 0. (8)

The energy density is

E(z) = S(z)− 1

2
zTK∂xz

and the energy flux is

F(z) = 1

2
zTK∂tz.

This can be seen from

0= ∂tzTM∂tz= ∂t S(z)− ∂tzTK∂xz= ∂t S(z)− 1

2
∂t
[
zTK∂xz

]+ 1

2
∂x
[
zTK∂tz

]
.

For the wave equation (1), we can eliminate the partial derivatives inE and F and can
formulate an energy conservation law (8) with

E = 1

2
(w2+ v2)+ V(u) and F = −vw,

where we have made use of the identity∂xv= ∂tw= ∂t xu. There is a corresponding momen-
tum conservation law which is obtained by premultiplying (2) by∂xzT [4]. For the wave
equation, we can again simplify the corresponding expressions and obtain a momentum
conservation law

∂t I (z)+ ∂xG(z) = 0 (9)

with

I (z) = F(z) = −vw and G(z) = 1

2
(w2+ v2)− V(u).

It is known that Gauss–Legendre methods exactly preserve quadratic first integrals of or-
dinary differential equations [7, 18]. One could therefore expect that a Gauss–Legendre
discretization of the wave equation (1) leads to a discrete energy/momentum conservation
law if the functionV is zero or at most quadratic inu. As we will see in Section 3, this
analogy does indeed hold.

2. GAUSS–LEGENDRE DISCRETIZATIONS ARE MULTI-SYMPLECTIC

Let us state the multi-symplectic formulation of the wave equation (1) in the form

∂t u = v, (10)

∂xu = w, (11)

∂tv − ∂xw = −V ′(u). (12)
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The corresponding equations for the differential one formsdz= (du, dv, dw)T are given
by

∂t du = dv,

∂x du = dw,

∂t dv − ∂x dw = −V ′′(u) du.

This yields the multi-symplectic conservation law (4) via

du ∧ ∂t dv − du ∧ ∂x dw = −V ′′(u) du ∧ du = 0

together with the observation that

∂t [du ∧ dv] = ∂tdu ∧ dv + du ∧ ∂tdv = dv ∧ dv + du ∧ ∂tdv = du ∧ ∂tdv

and, similarly,

∂x[du ∧ dw] = du ∧ ∂x dw.

Let us now discretize (10)–(12) by a Gauss–Legendre collocation method written in the
form of an implicit Runge–Kutta method [18]. We start with the spatial discretization and
rewrite (10)–(12) as

∂xu = w, (13)

∂xw = ∂tv + V ′(u), (14)

0 = ∂t u− v. (15)

Next we apply an implicit Runge–Kutta (RK) scheme withs stage variables(Ui ,Wi ) and
coefficients{ai j }, {bi } to (13)–(14) and obtain the semi-discretization

Ui = uk +1x
s∑

j=1

ai j Wj , (16)

Wi = wk +1x
s∑

j=1

ai j (∂t Vj + V ′(U j )), (17)

uk+1 = uk +1x
s∑

i=1

bi Wi , (18)

wk+1 = wk +1x
s∑

i=1

bi (∂t Vi + V ′(Ui )) (19)

which is defined for allt . Note thatuk(t) is an approximation tou(xk, t). For simplicity,
we setk = 0 and assume thatxk = 0.

Let us check if this semi-discretization of the wave equation (2) implies a corresponding
semi-discretized version of the conservation law (4). We first derive the equations for the
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differentials

dUi = du0+1x
s∑

j=1

ai j dWj , (20)

dWi = dw0+1x
s∑

j=1

ai j (∂t dVj + V ′′dU j ), (21)

du1 = du0+1x
s∑

i=1

bi dWi , (22)

dw1 = dw0+1x
s∑

i=1

bi (∂t dVi + V ′′ dUi ). (23)

Using (22) and (23), we proceed with

du1 ∧ dw1 =
(

du0+1x
s∑

i=1

bi dWi

)
∧
(

dw0+1x
s∑

i=1

bi (∂t dVi + V ′′ dUi )

)

= du0 ∧ dw0+ du0 ∧1x
s∑

i=1

bi (∂t dVi + V ′′ dUi )+1x
s∑

i=1

bi dWi ∧ dw0

+1x2
s∑

i=1

s∑
j=1

bi bj dWi ∧ (∂t dVj + V ′′ dU j ).

This is further transformed to

du1 ∧ dw1 = du0 ∧ dw0+1x
s∑

i=1

bi dUi ∧ ∂t dVi

+1x2
s∑

i=1

s∑
j=1

(bi bj − bj aji − bi ai j ) dWi ∧ (∂t dVj + V ′′ dU j )

using (20)–(21). The last term is zero for Gauss–Legendre methods since [18]

bj aji + bi ai j − bi bj = 0

for all i, j . Thus, upon applying a Gauss–Legendre RK method, we obtain the semi-
discretized conservation law

[du1 ∧ dw1− du0 ∧ dw0] −
s∑

i=1

bi [dUi ∧ ∂t dVi ]1x = 0 (24)

which holds for allt .
The next step is the discretization in time over a time interval [0,1t ]. Since we are

using implicit RK methods, we can solve (16)–(17) for∂t Vj (t), j = 1, . . . , s. We also
use Eq. (15) and implement a Runge–Kutta time-discretization withr stages and
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coefficients{ãmn}, {b̃m},

Ui,m = u0
i +1t

r∑
n=1

ãmnVi,n, (25)

Vi,m = v0
i +1t

r∑
n=1

ãmn∂t Vi,n, (26)

u1
i = u0

i +1t
r∑

m=1

b̃mVi,m, (27)

v1
i = v0

i +1t
r∑

m=1

b̃m∂t Vi,m. (28)

Here we introduced the notation

Ui,m ≈ u(ci1x, dm1t), u1
i ≈ u(ci1x,1t), um

1 ≈ u(1x, dm1t),

etc., with

ci =
s∑

j=1

ai j and dm =
r∑

n=1

ãmn.

The symbol∂t Vi,m denotes the numerical approximation of∂t Vi (dm1t) which we obtain
from (16)–(17) by fixingt = dm1t .

Now we assume again that a Gauss–Legendre method is used and, upon applying similar
arguments as before, we obtain the identity

du1
i ∧ dv1

i =
(

du0
i +1t

r∑
m=1

b̃m dVi,m

)
∧
(

dv0
i +1t

r∑
m=1

b̃m∂t dVi,m

)

= du0
i ∧ dv0

i +1t
r∑

m=1

b̃m dUi,m ∧ ∂t dVi,m

or

[
du1

i ∧ dv1
i − du0

i ∧ dv0
i

]− r∑
m=1

b̃m[dUi,m ∧ ∂t dVi,m]1t = 0.

Next we rewrite (24) fort = dm1t as

[
dum

1 ∧ dwm
1 − dum

0 ∧ dwm
0

]− s∑
i=1

bi [dUi,m ∧ ∂t dVi,m]1x = 0

and obtain the discretized conservation law

s∑
i=1

bi
[
du1

i ∧ dv1
i − du0

i ∧ dv0
i

]
1x −

r∑
m=1

b̃m
[
dum

1 ∧ dwm
1 − dum

0 ∧ dwm
0

]
1t = 0. (29)
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This formula can be understood as the approximation of the integral of (4) over the domain
of integration [0,1x] × [0,1t ], i.e., (29) approximates∫ 1x

x=0
[du(x,1t) ∧ dv(x,1t)− du(x, 0) ∧ dv(x, 0)] dx

−
∫ 1t

t=0
[du(1x, t) ∧ dw(1x, t)− du(0, t) ∧ dw(0, t)] dt = 0 (30)

using Gaussian quadrature for the evaluation of the two integrals.

PROPOSITION1. Let the multi-symplectic formulation(10)–(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss–Legendre collocation
methods with s, r, respectively,stages. Then the resulting discretization is a multi-symplectic
integrator with discrete conservation law(29).

It might appear as if the order in which the discretization in space and time is carried
out would lead to different schemes. But this is not the case. Take, for example, the spatial
discretization (16)–(19), which we write in its time-sampled version

Ui,m = um
0 +1x

s∑
j=1

ai j Wj,m, (31)

Wi,m = wm
0 +1x

s∑
j=1

ai j (∂t Vj,m + V ′(U j,m)), (32)

um
1 = um

0 +1x
s∑

i=1

bi Wi,m, (33)

wm
1 = w0+1x

s∑
i=1

bi (∂t Vi,m + V ′(Ui,m)), (34)

and the time discretization (25)–(28). We could apply the substitution

∂xWi,m = ∂t Vi,m + V ′(Ui,m)

in (32) and (34) as well as

∂t Vi,m = ∂xWi,m − V ′(Ui,m)

in (26) and (28) to obtain the same scheme which, however, appears now to be obtained via
a semi-discretization in time followed by a discretization in space. In fact, our schemes can
be written in the general form as presented in Fig. 1.

We like to point out thats= r = 1, i.e., an implicit midpoint discretization in space and
time, leads to the centered Preissman scheme1 [1, 6]

1

1t
M
(
z1

1/2− z0
1/2

)+ 1

1x
K
(
z1/2

1 − z1/2
0

) =∇zS
(
z1/2

1/2

)
(35)

1 Preissman originally suggested the method in 1961 for the solution of one-dimensional open-channel hydraulics
problems. The scheme is a popular choice for the computation of unsteady flow problems. It is less well known
that the scheme can also be applied to wave equations (see [1] for a historical account).
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FIG. 1. Multi-symplectic Gauss–Legendre collocation methods for nonlinear wave equation.

when applied to a general multi-symplectic PDE (2). Here the standard abbreviations

z0
1/2 =

1

2

(
z0

0+ z0
1

)
, z1/2

0 =
1

2

(
z0

0+ z1
0

)
, z1/2

1/2 =
1

4

(
z1

1+ z0
1+ z1

0+ z0
0

)
, etc.,

are used. The corresponding discrete multi-symplectic conservation law is [6]

[
dz1

1/2 ∧M dz1
1/2− dz0

1/2 ∧M dz0
1/2

]
1x + [dz1/2

1 ∧ K dz1/2
1 − dz1/2

0 ∧ K dz1/2
0

]
1t = 0.

See [6] for a detailed discussion of the Preissman scheme and its application to multi-
symplectic PDEs (2).

When looking at problems with periodic boundary conditions, formula (29) has
another interesting consequence. Let us take the sum of Eq. (29) over all spatial grid
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pointsk = 1, . . . ,M

M∑
k=1

(
s∑

i=1

bi
[
du1

i,k ∧ dv1
i,k − du0

i,k ∧ dv0
i,k

]
1x

−
r∑

m=1

b̃m
[
dum

k+1 ∧ dwm
k+1− dum

k ∧ dwm
k

]
1t

)
= 0.

Here we have used the abbreviations

u1
i,k ≈ u(ci1x + k1x,1t), um

k ≈ u(k1x, dm1t),

etc. Periodicity in space implies

M∑
k=1

r∑
m=1

b̃m
[
dum

k+1 ∧ dwm
k+1− dum

k ∧ dwm
k

]
1t

=
r∑

m=1

b̃m
[
dum

M+1 ∧ dwm
M+1− dum

1 ∧ dwm
1

]
1t = 0

which in turn yields

M∑
k=1

s∑
i=1

bi du1
i,k ∧ dv1

i,k =
M∑

k=1

s∑
i=1

bi du0
i,k ∧ dv0

i,k.

This is precisely conservation of symplecticity in time with respect to the state variables

u = {ui,k}k=1,...M;i=1,...,s and v= {vi,k}k=1,...M;i=1,...,s

and the wedge productdu∧ Bdv whereB is a diagonal matrix with entries corresponding
to the weights{bi }. In other words, multi-symplectic Gauss–Legendre methods imply the
conservation of symplecticity in time, i.e.,

dun+1 ∧ Bdvn+1 = dun ∧ Bdvn,

when applied to problems with periodic boundary conditions. Thus these methods are also
symplectic discretizations in the “classical” sense (although with a non-canonical—but
non-degenerate—symplectic structure).

PROPOSITION2. Let the multi-symplectic formulation(10)–(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss–Legendre collocation
methods with s, r, respectively, stages. Assume that we solve an initial value problem in time
with periodic boundary conditions in space. Then the resulting discretization yields a finite
dimensional Hamiltonian truncation of the wave equation in space with the underlying
symplectic structuredu ∧ Bdv and a symplectic discretization of this finite-dimensional
system in time.



MULTI-SYMPLECTIC METHODS FOR WAVE EQUATIONS 483

3. CONSERVATION OF ENERGY AND MOMENTUM

As already mentioned in the Introduction, the wave equation (1) satisfies the energy
conservation law

∂t E + ∂x F = 0,

where

E = 1

2
(w2+ v2)+ V(u)

is the energy density and

F = −vw
is the energy flux. The wave equation also satisfies the momentum conservation law (9).
We will come back to the issue of momentum conservation towards the end of this section.

We now check for the conservation of the following discrete energy conservation law

s∑
i=1

bi
[
E1

i − E0
i

]
1x +

r∑
m=1

b̃m
[
Fm

1 − Fm
0

]
1t = 0 (36)

with the obvious abbreviations

E1
i =

1

2

((
w1

i

)2+ (v1
i

)2)+ V
(
u1

i

)
, Fm

1 = −vm
1 w

m
1 ,

etc. This is an approximation to the contour integral in the(x, t) plane∫ k1x

x=0
[E(z(x, n1t))− E(z(x, 0))] dx+

∫ n1t

t=0
[F(z(k1x, t))− F(z(0, t))] dt = 0 (37)

with k= n= 1 in the same sense as (29) is for (30). It immediately also implies a corre-
sponding result for anyk, n > 1.

Since Gauss–Legendre collocation methods preserve quadratic integrals of ODEs exactly
[7, 18], we could expect that multi-symplectic Gauss–Legendre methods will give rise to
a discrete conservation law (36) whenV(u)= cu2/2, c ∈ R some constant. To be able to
evaluate the corresponding discrete conservation law (36), we have to first introduce two
auxiliary systems, namely

Vi,m = vm
0 +1x

s∑
j=1

ai j ∂xVj,m, (38)

vm
1 = vm

0 +1x
s∑

i=1

bi ∂xVi,m (39)

and

Wi,m = w0
i +1t

r∑
n=1

ãmn∂t Wi,n, (40)

w1
i = w0

i +1t
r∑

m=1

b̃m∂t Wi,m (41)
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to obtain the missing approximations ofv andw along the boundary of [0,1x] × [0,1t ].
The undetermined values of{vm

0 } and{w0
i } are implicitly given by

um
0 = u0

0+1t
r∑

n=1

ãmnv
n
0 (42)

and

u0
i = u0

0+1x
s∑

j=1

ai jw
0
j . (43)

Using Eqs. (38)–(41), (25), and (31), we derive the two identities

Ui,m = u0
i +1t

r∑
n=1

ãmnVi,n

= u0
i +1t

r∑
n=1

ãmn

(
vn

0 +1x
s∑

j=1

ai j ∂xVj,n

)

= u0
i +1t

r∑
n=1

ãmnv
n
0 +1t1x

s∑
j=1

r∑
n=1

ai j ãmn∂xVj,n

= u0
i + um

0 − u0
0+1t1x

s∑
j=1

r∑
n=1

ai j ãmn∂xVj,n

and, similarly,

Ui,m = um
0 + u0

i − u0
0+1t1x

s∑
j=1

r∑
n=1

ai j ãmn∂t Wj,n.

This implies

s∑
j=1

r∑
n=1

ai j ãmn∂xVj,n =
s∑

j=1

r∑
n=1

ai j ãmn∂t Wj,n

and we can conclude that

∂xVi,m = ∂t Wi,m for all i,m. (44)

This reflects the fact that the exact solutions also satisfy∂xv= ∂tw= ∂xtu. (In [6], this “hid-
den” conservation law is made explicit by going to a different multi-symplectic formulation
of the wave equation (1).)

Note that we also obtain the additional equations

u1
0 = u0

0+1t
r∑

m=1

b̃mv
m
0 and u0

1 = u0
0+1x

s∑
i=1

biw
0
i

as well as

u1
1 = u0

1+1t
r∑

m=1

b̃mv
m
1 and u1

1 = u1
0+1x

s∑
i=1

biw
1
i ,
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which defineu0
0≈ u(0, 0), u0

1≈ u(1x, 0), u1
0≈ u(0,1t), and u1

1≈ u(1x,1t) and thus
close the auxiliary system (38)–(43). These equations are over-determined but self-consistent
because of

0 = 1t
r∑

m=1

b̃mv
m
1 +1x

s∑
i=1

biw
0
i −1t

r∑
m=1

b̃mv
m
0 −1x

s∑
i=1

biw
1
i

= 1t
r∑

m=1

b̃mv
m
0 +1t1x

r∑
m=1

s∑
i=1

b̃mbi ∂xVi,m +1x
s∑

i=1

biw
0
i

−1t
r∑

m=1

b̃mv
m
0 −1x

s∑
i=1

biw
0
i −1x1t

s∑
i=1

r∑
m=1

bi b̃m∂t Wi,m

and (44). In fact, we have just shown that the “hidden” conservation lawvt −wx = 0 gives
rise to the discrete conservation law

r∑
m=1

b̃m
[
vm

1 − vm
0

]
1t −

s∑
i=1

bi
[
w1

i − w0
i

]
1x = 0.

Let us now come back to the discrete energy conservation law (36). Equations (38)–(41)
together with (31)–(34) and (25)–(28) yield

wm
1 v

m
1 =

(
wm

0 +1x
s∑

i=1

bi (∂t Vi,m + cUi,m)

)(
vm

0 +1x
s∑

i=1

bi ∂xVi,m

)

= wm
0 v

m
0 +1x

s∑
i=1

bi (Vi,m∂t Vi,m + cVi,mUi,m +Wi,m∂xVi,m) (45)

and, similarly,

E1
i = E0

i +1t
r∑

m=1

b̃m(Vi,m∂t Vi,m + cUi,mVi,m +Wi,m∂t Wi,m), (46)

where we used the fact that

bj aji + bi ai j − bi bj = 0 and b̃ j ã j i + b̃i ãi j − b̃i b̃ j = 0

in the same manner as done in Section 2 to prove multi-symplecticity. Combining both
formulas, we obtain

s∑
i=1

bi
[
E1

i − E0
i

]
1x +

r∑
m=1

b̃m
[
Fm

1 − Fm
0

]
1t =

s∑
i=1

r∑
m=1

bi b̃mWi,m(∂t Wi,m − ∂xVi,m).

The right hand side of this equation is zero due to (44).

PROPOSITION3. Let the multi-symplectic formulation(10)–(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss–Legendre collocation



486 SEBASTIAN REICH

methods with s, r, respectively, stages. Let us also assume that the potential V in(1) is of
the form

V(u) = c

2
u2,

c ∈ R some constant. Then the resulting discretization conserves the discrete energy con-
servation law(36).

Li and Vu-Quoc have suggested a method that exactly conserves a discrete local energy
conservation law for any type of smooth potentialV(u) [21, 15]. This local energy con-
servation law is, however, different from (36). Their approach is based on a second central
difference approximation in space and an energy conserving variant of the implicit midpoint
method in time. We wish to point out that, following their approach, one can also obtain a
variant of the centered Preissman scheme (35) that exactly conserves the discrete energy
conservation law (36) withs = r = 1 for any smooth potentialV(u). The idea is to apply
an implicit midpoint discretization in space and a proper energy conserving variant of the
midpoint discretization in time. See the Appendix for more details. Note that this energy
conserving scheme cannot be expected to be multi-symplectic, in general, and that, for
linear problems, the scheme reduces to the box scheme.

We now investigate the preservation of the momentum conservation law (9). We first
define a discrete conservation law

s∑
i=1

bi
[
I 1
i − I 0

i

]
1x +

r∑
m=1

b̃m
[
Gm

1 − Gm
0

]
1t = 0 (47)

with the obvious abbreviations

I 1
i = −w1

i v
1
i , Gm

1 =
1

2

((
vm

1

)2+ (wm
1

)2)− V
(
um

1

)
,

etc. This is an approximation to the contour integral in the(x, t) plane,∫ 1x

x=0
[ I (z(x,1t))− I (z(x, 0))] dx+

∫ 1t

t=0
[G(z(1x, t))− G(z(0, t))] dt = 0.

AssumingV(u) = cu2/2, we first derive

w1
i v

1
i =

(
w0

i +1t
r∑

m=1

b̃m∂t Wi,m

)(
v0

i +1t
r∑

m=1

b̃m∂t Vi,m

)

= w0
i v

0
i +1t

r∑
m=1

b̃m(Vi,m∂xVi,m +Wi,m∂t Vi,m)

= w0
i v

0
i +1t

r∑
m=1

b̃m(Vi,m∂xVi,m +Wi,m∂xWi,m − cWi,mUi,m),

where, in the second line, we made use of (44). We also obtain

Gm
1 = Gm

0 +1x
s∑

i=1

bi (Wi,m∂xWi,m + Vi,m∂xVi,m − cUi,mWi,m).

Combining both results, we indeed obtain the discrete conservation law (47).
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PROPOSITION4. Let the multi-symplectic formulation(10)–(12) of the nonlinear wave
equation(1) be discretized in space and in time by a pair of Gauss–Legendre collocation
methods with s, r, respectively, stages. Let us also assume that the potential V in(1) is of
the form

V(u) = c

2
u2,

c ∈ R some constant. Then the resulting discretization conserves the discrete momentum
conservation law(47).

Propositions 3 and 4 show that multi-symplectic integrators for linear wave equations have
excellent energy-momentum conservation. This suggests that multi-symplectic integrators
for nonlinear wave equations will preserve the discrete energy-momentum conservation
laws in good approximation.

The following “global” result for a wave equation (1) with periodic boundary conditions
u(0, t) = u(L , t) can be stated. It follows from (37) that

E(t) :=
∫ L

x=0
E(z(x, t)) dx = E(0) :=

∫ L

x=0
E(z(x, 0)) dx

if z(0, t) = z(L , t) (periodic boundary conditions). This implies conservation of total
energyE(t) for the wave equation when considered as an infinite-dimensional Hamiltonian
PDE. Any finite-dimensional Hamiltonian approximation of the wave equation and sub-
sequent symplectic integration in time will conserve this energy very well provided1t is
small enough [2]. This also applies to the multi-symplectic Gauss–Legendre methods of
Section 2 which follow from Proposition 2 and backward error analysis results in [2, 16].
Furthermore, there is also conservation of global momentum

I(t) :=
∫ L

x=0
I (z(x, t)) dx = I(0) :=

∫ L

x=0
I (z(x, 0)) dx

if z(0, t) = z(L , t) (periodic boundary conditions). SinceI is a quadratic expression inv
andw, Gauss–Legendre collocation methods will preserve the discrete global momentum
conservation law exactly.

However, this global view provides a much weaker concept of energy and momentum
conservation. It is a necessary but not sufficient condition for the preservation of the corre-
sponding local conservation laws.

4. SEMI-EXPLICIT AND LINEARLY IMPLICIT

MULTI-SYMPLECTIC DISCRETIZATIONS

There are certainly other options available for the time discretization then using a high-
order implicit Gauss–Legendre collocation method (25)–(28) when integrating an initial-
boundary value (Cauchy) problem. In fact, one can either apply the implicit midpoint method
in time and use appropriate concatenations of the corresponding scheme to obtain a higher
order in time method or one can apply a higher order explicit symplectic partitioned Runge–
Kutta method in time [18]. Let us, for example, take an explicit symplectic concatenation
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method of the form

Ui,1 = u0
i ,

Vi,1 = v0
i ,

Ui,m+1 = Ui,m + αm1tVi,m+1,
for m= 1, . . . , r,

Vi,m+1 = Vi,m + βm1t∂t Vi,m,

u1
i = Ui,r+1,

u1
i = Vi,r+1

with weights(αm, βm). This yields

[
du1

i ∧ dv1
i − du0

i ∧ dv0
i

]− r∑
m=1

βm[dUi,m ∧ ∂tdVi,m]1t = 0

which in turn implies the discrete conservation law

s∑
i=1

bi
[
du1

i ∧ dv1
i − du0

i ∧ dv0
i

]
1x −

r∑
m=1

βm
[
dum

1 ∧ dwm
1 − dum

0 ∧ dwm
0

]
1t = 0

which is again a discretization of (30).
Another option is to apply the multi-symplectic Gauss–Legendre collocation methods

from Fig. 1 to a linearized wave equation and to use the following three step discretization
for the nonlinear problem:

(1) Updatev0
i via

ṽ0
i = v0

i −
1t

2
V̄ ′
(
u0

i

)
.

(2) Apply a multi-symplectic Gauss–Legendre method to the linearized wave equation
usingṽ0

i . Denote the result by(um
1 , w

m
1 , u

1
i , ṽ

1
i )

T .
(3) Update ˜v1

i via

v1
i = ṽ1

i −
1t

2
V̄ ′
(
u1

i

)
.

HereV(u) = cu2/2+ V̄(u) was used. This linearly implicit scheme conserves the multi-
symplectic conservation law (29). The overall scheme will only be second order in time, in
general. But higher order in time schemes can be obtained by a proper composition of the
(symmetric) second order scheme [14].

5. NUMERICAL EXPERIMENTS

To gain insight into the performance of the suggested multi-symplectic methods, in
particular into their local conservation of energy and momentum, we perform the following
numerical experiments. We discretize the sine-Gordon equation

∂t t u = ∂xxu− sin(u)
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using the multi-symplectic Gauss–Legendre method withr = 1 (midpoint in time) and
s= 2 (fourth order Gauss–Legendre method in space). We implement periodic boundary
conditionsu(−L/2, t)= u(L/2, t) for two different sets of initial conditions. For the first
experiment, which we callExperiment A, we useL = 100,

u(x, 0) = 4 tan−1

(
ex−L/6√
1− β2

)
+ 4 tan−1

(
e−x−L/6√

1− β2

)
,

and

v(x, 0) = ∂

∂t

[
4 tan−1

(
ex−L/6−βt√

1− β2

)
+ 4 tan−1

(
e−x−L/6−βt√

1− β2

)]
t=0

.

On an infinite domain, these initial conditions correspond to a soliton and anti-soliton
solution moving with speed±β. We setβ = 0.5. In Fig. 2, snapshots of the time evolution
of the wave formu(x, t) are shown over a time intervalt ∈ [0, 200]. This approximation is
obtained using a time-step of1t = 0.1 andM = 100 spatial mesh points.

For the second experiment, calledExperiment B, we consider the so-called breather
solution

u(x, t) = 4 tan−1

(√
1− ω2

ω

cosωt

cosh(x
√

1− ω2)

)

FIG. 2. Time evolution of the soliton/anti-soliton solution over the time intervalt ∈ [0, 200].
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FIG. 3. Numerical errors in the global energy and momentum over the time interval [0, 200] (with two
collisions of kinks).

with ω = 0.9. On an infinite domain, this is a bump shaped solution which oscillates up and
down with period 2π/ω. To exclude boundary effects, we used period boundary conditions
with L = 100.

We monitor the drift in the numerical approximations to the total energyE(t) and the
total momentumI(t) as well as the error in the numerical discretizations of the local energy
conservation law (36) and the local momentum conservation law (47).

The numerical errors in the conserved quantities for the Experiment A can be found
in Fig. 3. These results are obtained usingM = 100 spatial grid points and a time-step of
1t = 0.1. Total momentumI(t) is conserved exactly since it is a quadratic invariant. The
two pronounced spikes in the error of the total energy correspond to rapid “flip” transitions
of the solutionu(x, t) whenever the two kinks meet atx = ±L or x = 0.

We also plot the error in the local conservation laws (36) and (47) as a function of the
spatial grid location and the time-step. As can be seen from Fig. 4, the errors are mainly
concentrated around the two moving fronts.

The corresponding numerical results for Experiment B can be found in Fig. 5. These
results are obtained usingM = 60 spatial grid points and 60 time-steps per period of the
motion which isT = 2π/ω≈ 6.9813. Again, total momentumI(t) is conserved exactly (up
to the error in the Newton iteration) since it is a quadratic invariant. The error behaviour
of the total energy is typical for a symplectic time discretization of an Hamiltonian ODE.
The errors in the local conservation laws are focused aboutx = 0 where the center of the
breather solution is located. Instead of summing the errors in the local conservation laws
over the full spatial extension and plotting the result as a function of time, one can also sum
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FIG. 4. Numerical errors in the local energy/momentum conservation laws over the two intervals [0, 30] (no
collision of kinks) and [150, 170] (collision of kinks atx= 0).

FIG. 5. Numerical errors in the local/global energy/momentum conservation laws for the breather solution
over the time interval [0, 140].
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FIG. 6. Numerical errors in the local energy (a) and momentum (b) conservation laws summed over the spatial
interval [0, L/4] and time intervals [0, τ ] as a function ofτ ∈ [0, 140] (breather solution).

the errors over a fixed spatial interval [0,a] and time intervals [0, τ ], τ ≥ 0. See Fig. 6 for
the caseτ ∈ [0, 140] anda= L/4. Note that the errors in the local energy conservation law
do not grow withτ but that the corresponding errors in the momentum conservation laws
increase with increasing values ofτ .

We like to point out that our numerical experiments show that the error in the energy
conservation law (36) divided by the area element1x1t depends only on the chosen time-
step1t and is second order in1t while the corresponding error in the local momentum
conservation law (47) depends only on the spatial mesh-size1x and is approximately of
fourth order in1x. See Table I.

TABLE I

Maximum Error in the Local Energy/Momentum Conservation Laws

over All Spatial Grid Points and Two Time Periods as a Function of the

Spatial Mesh Size∆x and the Time-Step∆t

Energy/momentum 1t = 0.058 1t = 0.116 1t = 0.1745

1x = 1.0 3.2e-4/4.16e-5 1.3e-3/4.09e-5 2.8e-3/4.06e-5
1x = 1.25 3.03e-4/1.06e-4 1.2e-3/1.06e-4 2.7e-3/1.04e-4
1x = 1.67 3.06e-4/2.72e-4 1.1e-3/2.97e-4 2.4e-3/2.87e-4

Note.The residuals in (36) and (47) are divided by1t1x to make the corresponding
integrals independent of the size of the cell over which they are taken.
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For comparison, we implemented a method-of-line approach to the wave equation (1)
using the St¨ormer–Verlet method [18] in time and the symmetric fourth order finite dif-
ferences discretization of the Laplacian operator [8]. The resulting discretization can be
written as

qn+1
j = qn

j +1tpn+1/2
j ,

pn+1/2
j = pn−1/2

j + 1t

1x2

(−qn
j+2+ 16qn

j+1− 30qn
j + 16qn

j−1− qn
j−2

12

)
−1tV ′

(
qn

j

)
.

As shown in [13, 8], the resulting method is symplectic when considered as a time dis-
cretization of a finite dimensional Hamiltonian approximation of (1). However, because of
the non-symplectic finite difference approximation of the Laplacian, the overall method is
not multi-symplectic. We repeated Experiment B with this finite differences scheme and
evaluated thel∞ global error of the numerical computed breather solution afterk periods,
k= 1, . . . ,700. The results for a step-size of1t = T/120,T = 2π/ω, and different values
of the spatial mesh-size1x= L/M , L = 100, can be found in Fig. 7. We note that the
symplectic finite differences method has initially a smaller global error compared to the
multi-symplectic Gauss–Legendre collocation method. However, due to an apparently more

FIG. 7. Global solution error for the breather solution afterk= 1, . . . ,700 periods for1t = T/120 and
different values of1x= L/M using a symplectic finite differences method and a multi-symplectic Gauss–Legendre
collocation method of the same order: (a) Gauss–Legendre method (×) with M = 100 and finite differences method
(s) with M = 150 mesh points; (b) Gauss–Legendre method (×) with M = 80 and finite differences method (s)
with M = 100 mesh points.
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favourable error propagation, the multi-symplectic collocation method yields, in both cases,
a smaller global error afterk = 700 periods. Note that both methods use a second order
discretization in time and a fourth order discretization in space.

6. ANOTHER EXAMPLE: NONLINEAR SCHR ÖDINGER EQUATION

To demonstrate the generality of our approach, we briefly consider multi-symplectic
integration of the one-dimensional nonlinear Schr¨odinger equation [5]

i∂tψ = ∂xxψ + V ′(|ψ |2)ψ, (x, t) ∈ U ⊂ R2,

V :R→R some smooth function. Usingψ =a+ ib, we rewrite this as a pair of real-valued
equations

∂ta = +∂xxb+ V ′(a2+ b2)b,

∂t b = −∂xxa− V ′(a2+ b2)a.

Next we introduce a pair of conjugate momentav=ax, w= bx, and obtain the multi-
symplectic PDE

−∂t b− ∂xv = V ′(a2+ b2)a,

∂ta− ∂xw = V ′(a2+ b2)b,

∂xa = v,
∂xb = w

with phase space variablez= (a, b, v, w)T and Hamiltonian

S(z) = 1

2
(v2+ w2+ V(a2+ b2)).

The corresponding multi-symplectic conservation law (3) is

∂t [da ∧ db] + ∂x[da ∧ dv + db∧ dw] = 0. (48)

We like to point out that one of the conservation laws of the Schr¨odinger equation is

∂t
a2+ b2

2
+ ∂x(vb− wa) = 0. (49)

Again we first discretize the reformulated equation

∂xv = −∂t b− V ′(a2+ b2)a,

∂xw = +∂ta− V ′(a2+ b2)b,

∂xa = v,
∂xb = w
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in space by a Gauss–Legendre collocation method. Using similar notations as in Section 2,
it is relatively straightforward to derive the corresponding semi-discretized conservation
law

[da1 ∧ dv1− da0 ∧ dv0] + [db1 ∧ dw1− db0 ∧ dw0] +
s∑

i=1

bi ∂t [dAi ∧ dBi ]1x = 0.

Discretization in time is now achieved by using

Ai,m = a0
i +1t

r∑
n=1

ãmn∂t Ai,n,

Bi,m = b0
i +1t

r∑
n=1

ãmn∂t Bi,n,

a1
i = a0

i +1t
r∑

m=1

b̃m∂t Ai,m,

b1
i = b0

i +1t
r∑

m=1

b̃m∂t Bi,m

with the corresponding conservation property

[
da1

i ∧ db1
i − da0

i ∧ db0
i

]− r∑
m=1

b̃m[∂t dAi,m ∧ dBi,m + dAi,m ∧ ∂t dBi,m]1t = 0.

Combining these results, we derive the discretized multi-symplectic conservation law

s∑
i=1

bi
[
da1

i ∧ db1
i − da0

i ∧ db0
i

]
1x

+
m∑

r=1

b̃m
[
dam

1 ∧ dvm
1 − dam

0 ∧ dvm
0 + dbm

1 ∧ dwm
1 − dbm

0 ∧ dwm
0

]
1t = 0

which is a discretization of (48) integrated over the domain [0,1x] × [0,1t ].
Using the complex-valued state variablez = (ψ, φ)T ∈ C2, ∂xψ = φ, we can rewrite

the multi-symplectic formulation of the nonlinear Schr¨odinger equation in a more compact
notation as

i∂tψ − ∂xφ = V ′(|ψ |2)ψ,
∂xψ = φ

and the general form of a multi-symplectic Gauss–Legendre discretization can be found in
Fig. 8. In particular, the choicer = s= 1 leads again to a Preissman scheme

i

1t

(
ψ1

1/2− ψ0
1/2

) = 1

1x

(
φ

1/2
1 − φ1/2

0

)+ V ′
(∣∣ψ1/2

1/2

∣∣2)ψ1/2
1/2 ,

1

1x

(
ψ

1/2
1 − ψ1/2

0

) = φ1/2
1/2
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FIG. 8. Multi-symplectic Gauss–Legendre collocation methods for the nonlinear Schr¨odinger equation.

with

ψm
1/2 =

1

2

(
ψm

1 + ψm
0

)
, ψ

1/2
i = 1

2

(
ψ1

i + ψ0
i

)
, φ

1/2
i =

1

2

(
φ1

i + φ0
i

)
,

m, i = 1, 2, and

ψ
1/2
1/2 =

1

4

(
ψ1

1 + ψ1
0 + ψ0

1 + ψ0
0

)
, φ

1/2
1/2 =

1

4

(
φ1

1 + φ1
0 + φ0

1 + φ0
0

)
.

We like to point out that any multi-symplectic Gauss–Legendre discretization will exactly
preserve a discrete version of the conservation law (49). This follows from the quadratic
form of the conservation law and the fact that quadratic conservation laws are exactly
preserved by Gauss–Legendre methods.

When it comes to the integration of an initial-boundary value (Cauchy) problem, one could
discretize in space using a Gauss–Legendre method and replace the temporal discretization
by any convenient symplectic discretization of the spatially truncated system. Similar to
what has been shown in Section 4 for the nonlinear wave equation, we would again obtain
multi-symplectic methods.
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7. CONCLUDING REMARKS

Theoretical results indicate [3–5] that the multi-symplectic structure of certain PDEs is
crucial for a deeper understanding of wave phenomena. One of the nice features is that
it is a strictly local concept and that it can be formulated as a conservation law involving
differential two forms. It is thus also a very natural generalization of the conservation of
symplecticity for canonical Hamiltonian systems. The results of this paper show that it is
possible to find higher order multi-symplectic methods in a rather general setting again
similar to the finite dimensional situation.

The suggested Gauss–Legendre discretizations for the one-dimensional nonlinear wave
equation (1) naturally generalize to any multi-symplectic PDE (2). Furthermore, they can
also be applied to higher-dimensional nonlinear wave equations like, for example,

∂t t u− ∂xxu− ∂yyu = −V ′(u)

and, more generally, to multi-symplectic PDEs like, for example,

M∂tz+ K∂xz+ L∂yz=∇zS(z).

This also implies that the schemes can be applied to the corresponding stationary problems
characterised by∂tz= 0.

Further results on multi-symplectic methods in the context of finite volume methods can
be found in [17].

APPENDIX: ENERGY CONSERVING PREISSMAN SCHEME

The Preissman scheme (35) applied to the wave equation (1) results in the system

u1
1/2− u0

1/2

1t
= v1

1/2+ v0
1/2

2
, (50)

v1
1/2− v0

1/2

1t
= w

1/2
1 − w1/2

0

1x
− V ′

(
u1/2

1/2

)
, (51)

u1/2
1 − u1/2

0

1x
= w

1/2
1 + w1/2

0

2
. (52)

Following Li and Vu-Quoc [21, 15], we modify Eq. (51) to

v1
1/2− v0

1/2

1t
= w

1/2
1 − w1/2

0

1x
− V

(
u1

1/2

)− V
(
u0

1/2

)
u1

1/2− u0
1/2)

. (53)

We like to show that this modified scheme exactly conserves the discrete energy conservation
law

E1
1/2− E0

1/2

1t
+ F1/2

1 − F1/2
0

1x
= 0

with the abbreviations

En
1/2 =

1

2

((
wn

1/2

)2+ (vn
1/2

)2)+ V
(
un

1/2

)
and F1/2

m = −v1/2
m w1/2

m ,
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n,m = 0, 1. This discrete energy conservation law corresponds to the formula (36) with
r = s= 1, b1 = b̃1 = 1, andi = m= 1/2.

For the subsequent derivation it is crucial to observe that the solutions of (50)–(52) as
well as of (50) and (52)–(53) satisfy

w1
1/2− w0

1/2

1t
= 1

1t

(
u1

1− u1
0

1x
− u0

1− u0
0

1x

)
= 1

1x

(
u1

1− u0
1

1t
− u1

0− u0
0

1x

)
= v

1/2
1 − v1/2

0

1x
.

We now premultiply (52) by(w1
1/2− w0

1/2)/1t and use the above identity to obtain

(
w1

1/2

)2− (w0
1/2

)2

21t
= w1

1/2− w0
1/2

1t

u1/2
1 − u1/2

0

1x
= v

1/2
1 − v1/2

0

1x

w
1/2
1 + w1/2

0

2
. (54)

Next we premultiply (50) by(v1
1/2− v0

1/2)/1t which yields

(
v1

1/2

)2− (v0
1/2

)2

21t
= v1

1/2− v0
1/2

1t

u1
1/2− u0

1/2

1t
.

Finally, Eq. (53) is premultiplied by(u1
1/2 − u0

1/2)/1t which, using the previous equation,
results in (

v1
1/2

)2− (v0
1/2

)2

21t
= v1

1/2+ v0
1/2

2

w
1/2
1 − w1/2

0

1x
− V

(
u1

1/2

)− V
(
u0

1/2

)
1t

. (55)

Upon combining (54) and (55), we get

E1
1/2− E0

1/2

1t
= v

1/2
1 + v1/2

0

2

w
1/2
1 − w1/2

0

1x
+ v

1/2
1 − v1/2

0

1x

w
1/2
1 + w1/2

0

2

= v
1/2
1 w

1/2
1 − v1/2

0 w
1/2
0

1x

= − F1/2
1 − F1/2

0

1x

as desired. The system (50) and (52)–(53) does not, in general, preserve the momentum
conservation law

I 1
1/2− I 0

1/2

1t
+ G1/2

1 − G1/2
0

1t
= 0

with

I n
1/2 = −vn

1/2w
n
1/2 and G1/2

m =
1

2

((
v1/2

m

)2+ (w1/2
m

)2)− V
(
u1/2

m

)
.

To obtain a momentum conserving algorithm, (53) has to be replaced by

v1
1/2− v0

1/2

1t
= w

1/2
1 − w1/2

0

1x
− V

(
u1/2

1

)− V
(
u1/2

0

)
u1/2

1 − u1/2
0

.
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